

User Needs: Ionospheric Model

Anthony J. Mannucci

Jet Propulsion Laboratory, California Institute of Technology

Acknowledgement to:

George Hajj

Byron Iijima

Attila Komjathy

Xiaoqing Pi

Bruce Tsurutani

Brian D. Wilson

Context

- Recent "user"
 - Proposed CCMC model runs for science, w/ PI support
- Modeler and User
 - USC/JPL GAIM considered for adoption by CCMC
 - Data assimilation model
- Operational involvement
 - An early theme in our group: using GPS data for space environment prediction
- CCMC is impressive
 - Modeling powerhouse
 - Community involvement
 - Exciting future possibilities

Science Drivers

Structural Details

Mannucci et al, GRL 2005

Topside Ionosphere Content (CHAMP ~ 400km altitude)

Altimeter TEC

October 30 ~22:20 UT

Mannucci et al., Eos Trans. AGU, 84(46), Fall Meet. Suppl., Abstract SM51F-0620, 2003

October 30 run at CCMC

Importance of Coupling?

Equatorial electrojet estimate: Yap and Guam magnetometers

Ionospheric data has motivated renewed interest in penetration electric fields and shielding

What CCMC Provides

- Understand how well models describe data
 - Clues as to where there is new physics
- Implications of coupling
 - Compare coupled to un-coupled runs
- Increased computational resources
 - Run models that user cannot
- Forecasting studies
 - CCMC real-time models and predictions might lead what is available operationally
 - Useful for models that require those forecasted inputs

Suggestions

- Easily accessible full model output
- Modification of designated inputs
 - Evolve interfaces for new inputs, e.g. electric fields or winds
 - Coordination with PI is critical and compatible with CCMC rules
- User groups guide new interfaces
 - Tie-in to GEM/CEDAR campaigns and events
 - Strengthen advisory group interaction
- More flexible inputs/outputs
 - Connect forecast products to other model inputs
- Citation issue is critical

Modeler – USC/JPL GAIM Model

- USC Global Assimilative Ionosphere Model
 - Developed under ONR/AFOSR MURI Bob McCoy
 - Prof Chunming Wang, Applied Math at USC
- Initial development: single-ion assimilative ionosphere model physics-based Kalman filter
 - Runs on a dual-CPU workstation
 - Low to middle latitudes (closed field lines)
- Includes the adjoint model for 4DVAR assimilation
 - Permits more accurate forecast by adjusting drivers
 - Possible strong science role
- gaim++ multi-ion code under development
- Under consideration: model running at CCMC
 - Requires funding at this time (proposed)
 - Real-time version

USC/JPL GAIM Applications

- Real-time demonstration with C/NOFS data (AFRL)
 - Ground GPS data
 - C/NOFS in-situ electron density
 - C/NOFS CORISS occultations
 - C/NOFS Launch February 2006
- 3D-Ionospheric current model (NASA)
 - Assimilate COSMIC and C/NOFS data (Ne, conductivity) into GAIM
 - Use C/NOFS electric fields to compute currents
- Improve deep space tracking (NASA)
 - GPS ground data surrounding NASA tracking sites
- Demo with COSMIC constellation
- Thorn in Bob Schunk's side

Data Assimilation Models and CCMC ______

Data assimilation models designed to ingest data

- Operational users are adopting these models
- GAIM at CCMC \Rightarrow new data sets at CCMC
- Implications for CCMC need careful consideration
 - Increased complexity related to data validation and acquisition
- Real-time and/or continuous runs
 - High value for continuous assessment
 - Requires automated validation scripts

Ionosphere In-A-Box v1.0

- Demo at Space Weather Week 2004
- USC/JPL GAIM forward model and Kalman filter
- Hardware: one dual-CPU Linux workstation
- Data feeds! -
 - Geophysical indices from NOAA SEC
 - TEC data every 5 minutes from 77+ GPS sites
 - Ionosonde data every 15 minutes from SEC
 - JASON validation TEC every 3 hours
 - Post-processing GPS TEC from 200-900 sites
- Outputs:
 - Updated 3D density grid every 5 minutes
- Automated validation
 - (JASON, GPS)

Combined Hourly and Streaming Sites ______

Black = current all hourly, Blue = 77+ streaming, Red = potential add-ons

COSMIC: New Source Of Data

Summary

- CCMC is revolutionizing space science
- User-led evolution path
 - Listen to all your stake-holders!
 - Users, developers, agencies
- CCMC is entering data assimilation era
- JPL can contribute USC/JPL GAIM
- Radical suggestion
 - Can ionosphere data be considered as an input for solar wind and magnetospheric models?
 - "Non-unique inverse problem" versus "data starved"